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ABSTRACT 

 

 

This paper presents the effects of Frank- Kamenetskii parameter 

on Flames with Chain- breaking and Chain-branching kinetics. 

The combustion equation describing the phenomenon was non-

dimensionnalised to arrive at dimensionless equations. The 

existence and uniqueness of the solution was proved using 

upper and lower solution method .The properties of equation 

were also examined. The numerical solution showed that the 

steady problem has at least two solutions under certain 

conditions using finite difference scheme and Runge- kutta of 

order four and the result obtained were presented graphically. It 

was observed that temperature profile increases as the Frank- 

Kamenetskii increases. 
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INTRODUCTION 

 

Combustion waves have been studied for 

several years and still a subject or research.  

They have been observed in numerous 

experiments and play an important role in 

industrial processes, such as one of the 

current technologies for creating advanced 

materials”, Self-propagating High-

temperature Synthesis (SHS) 

Jang T. and Raduleson M.I. (2012) 

investigated dynamics of shock induced 

ignition in Fickett’s model with chain-

branching kinetics. A close form analytical 

solution was obtained by the method of 

characteristics and high activation energy 

asymptotic.  

 Huangwei and Zheng (2011) investigated 

spherical flame initiation and propagation 

with thermally sensisitive intermediate 

kinetics. The analytical result and simulation 

of result were obtained. Flame spherical 

propagation showed to be strongly affected 

by the Lewis number of fuel and radicals as 

well as the heat of reaction. 

Ayeni and Waheed (2005) examined a 

mathematical model of cigarette-like 

combustion using high activation energy 

asymptotics .Of particular interest were 

question of existence and uniquiness.It 

showed that the steady temperature 

increases as the Frank-Kamenetskii 

parameter  1   increases. 

Olayiwola ,Olatunji,Ajao,Waheed and 

Lanlege (2013) investigated effect of Frank-

Kamenetskii parameter on the propagation 

of forward and opposed shouldering 

combustion .The  properties of solution was 

examined under certain condition while the 

equation  was solved analytically using 

asymptotic expansion. It was discovered that 

Frank-Kamenetskii parameter played a 

crucial role in the slow burning process and 

the temperature decreased and species is 

consumed in the spatial direction. 

Olarenwaju, P. O., Ayeni, R. O., Adesanya 

A. O., Fenugi, O. J. and Adegbile, E. A 

(2007) examined the effect of activation 

emerges and strong viscous dissipation term 

on two-step Arrhenius combustion reactions 

to give further insight into the theory of 

combustion under physical reasonable 

assumption. They extend the non-uniformly 

of vessels discussed in Olarewaju (2007). In 

a uniform vessel, maximum temperature 

occurs towards the end of the tube on the 

other hand, in a uniform vessel, maximum 

temperature occurs at the centre. Also 

maximum temperature for diverging or 

converging channel is greater than that of a 

uniform vessel. 

Olarewaju P.O. (2005) examined solutions 

of two-step reactions with variable thermal 

conductivity. He considered not only the 

generalized temperature dependences of 

reaction rate, but he also proposed suitable 

approximation of the kinetics reactions in 

the limit of large/small activation energy. 

Gubernov, V. V. and Kim, J. S. (2006) 

studied the steady travelling waves in the 

adiabatic model with two-step chain 

branching reaction mechanisms was 

investigated numerically. The properties of 

these solutions were demonstrated to have 

similarities with the properties of non-

adiabatic combustion waves. That is, there is 

a residual amount of fuel left behind the 

travelling waves and the solutions can 

exhibit extinction. It is also shown that the 

model processes a new type multiple 

travelling wave solutions( which one call 

wave trains) with complex structured of the 

profiles and very speeds 
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MATHEMATICAL  FORMULATION 

The mathematical equations describing the flames with Chain-breaking and Chain–branching 

Kinetics is given by; 
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with initial and boundary conditions,                                         

T (x, 0) = T0     T (0,t )= T0 , T(L, t)= T0                                                                         (2.2)                                                                                                                                     

 

 METHOD OF SOLUTION 

 We make the variable dimensionless by introducing 

 

)( 02
TT

RT

E

O

 ,     
L

x
x 

1
   and   

E

RT0 ,                                                                 (3.1) 

and we assume that, 

E1= EE                                                                                                                           (3.2) 

)(
1

0

0

TT
T






                                                                                                                 (3.3) 

The equation becomes 































1

1

2

1
1

2

2

1 e

e

x
K

t

n

                                                                                                  (3.4)                               

with initial and boundary conditions  

                                                                                                            (3.5)
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E

e
a

b


  is the dimensionless permeability parameter 

Existence and Uniqueness of Solution. 

 Definition 1: A solution function v is said to be a lower solution of the problem 

LV = F (y, t, v) 
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If v satisfies LV ),,( vtyF                                                                                               (3.1.2) 
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Definition 2: A smooth function U is said to be an upper solution of the problem 

LU = F (y, t, u) 
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if u satisfies 

LU ),,( utyF                                                                                                                     (3.1.4) 
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Theorem 3.1.1 

Let     
1     

2            . Then Equation (3.4) with the boundary and initial 

condition has a solution for all    . 
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we shall show that  (x, t) = 0  is a lower solution. 

Clearly, 

 (x, t) = 0,  (x, t) =  (1, t)  

Now,  
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We shall show that  (x, t) as defined is an upper solution 

Clearly, 
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Hence 

By definition 2,  (x, t) = 
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    is an upper solution                                          (3.1.9)  
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Hence, there exists a solution of problem (3.4). This completes the proof. 
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Then 0




t
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In the proof, we shall make use of the following lemma of Kolodner and Pederson (1966) 

Lemma (Kolodner and Pederson 1966). 
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where k is bounded from below. If 0)0,( xu  then 0),( txu  for all 
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Clearly V is bounded from below. Hence by Kolodner and Pederson’s lemma 
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By Theorem 3.1.2   the problem has a solution and the solution is unique.  

Theorem 3.1.3: Let   02  n  

Then, the steady equation  
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has at least two solutions 

Proof:   
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NUMERICAL SIMULATION 

In this section, the sketch of how to obtain the solution on effects of flames with chain -breaking 

and chain- breaking kinetics was given. The description of the numerical scheme employed in 

solving the problems (steady case) is shooting method and Runge - kutta of order four. 
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Description of the shooting method 

    Consider the differential equation 
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Hence we obtain the 2
nd 
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IZZ

ZfZ





)0(,0)0( 1

0

11

                                                       

 

where 

 

 2

2

1

1

2

1

1221

1

22

2

11

))12(11(
1















































ek

ee
f

e

  (4.1.3)

 

Reducing Equation (4.1.1) into system of 1
st
 order initial value problem. 

Let  
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By Runge-kutta of order four we have 
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A computer program was written to perform the iterative computations. 

 RESULTS AND DISCUSSION 

The existence and uniqueness of problem is 

proved by the actual solution. Also the 

analytical solution of the equation (3.4) was 

given by Equation (3.1.15) - (3.1.18). For 

the unsteady state reaction, numerical 

simulations have been carried out for 

different values of λ1, .The numerical 

evaluations of the unsteady of temperature 

flame profiles are presented in Figures 1 and 

2. It shows that the flames temperature 

increases with   increase in Frank-

Kamenestikii parameter λ1. For the steady 

state reaction, numerical calculations have 

been carried out for different values of λ2. 

 The numerical results for the steady flames 

chain reaction concentration profiles are 

displayed in Figures 3 and 4. It is shown 

from Figures 3 and 4 that temperature 

profiles increase with increase in Frank –

Kamentstkii parameter.
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Fig-1: Unsteady temperature          

profile θ(x,t)  for equation  (3.4)  

for various values of λ₁ . 
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Fig-2: Unsteady temperature 

profile θ(x,t)  for equation ( 3.4) 

for various  values of λ₁ . 
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CONCLUSION 

For the burning process associated with 

chain-breaking and chain-branching 

kinectics, analytical solution was sought for 

in steady state. The governing parameter for 

the problem under study is Frank-

Kamenetskill number. From the studies 

made on this paper we concluded that 

Frank-Kamenetskill number enhances the 

flame temperature.   
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